
23

Complete Virtual Memory Systems

Before we end our study of virtualizing memory, let us take a closer look
at how entire virtual memory systems are put together. We’ve seen key
elements of such systems, including numerous page-table designs, inter-
actions with the TLB (sometimes, even handled by the OS itself), and
strategies for deciding which pages to keep in memory and which to kick
out. However, there are many other features that comprise a complete
virtual memory system, including numerous features for performance,
functionality, and security. And thus, our crux:

THE CRUX: HOW TO BUILD A COMPLETE VM SYSTEM

What features are needed to realize a complete virtual memory sys-
tem? How do they improve performance, increase security, or otherwise
improve the system?

We’ll do this by covering two systems. The first is one of the earli-
est examples of a “modern” virtual memory manager, that found in the
VAX/VMS operating system [LL82], as developed in the 1970’s and early
1980’s; a surprising number of techniques and approaches from this sys-
tem survive to this day, and thus it it is well worth studying. Some ideas,
even those that are 50 years old, are still worth knowing, a thought that
is well known to those in most other fields (e.g., Physics), but has to be
stated in technology-driven disciplines (e.g., Computer Science).

The second is that of Linux, for reasons that should be obvious. Linux
is a widely used system, and runs effectively on systems as small and
underpowered as phones to the most scalable multicore systems found
in modern datacenters. Thus, its VM system must be flexible enough to
run successfully in all of those scenarios. We will discuss each system to
illustrate how concepts brought forth in earlier chapters come together in
a complete memory manager.

1

liujunming




2 COMPLETE VIRTUAL MEMORY SYSTEMS

23.1 VAX/VMS Virtual Memory

The VAX-11 minicomputer architecture was introduced in the late 1970’s
by Digital Equipment Corporation (DEC). DEC was a massive player
in the computer industry during the era of the mini-computer; unfortu-
nately, a series of bad decisions and the advent of the PC slowly (but
surely) led to their demise [C03]. The architecture was realized in a num-
ber of implementations, including the VAX-11/780 and the less powerful
VAX-11/750.

The OS for the system was known as VAX/VMS (or just plain VMS),
one of whose primary architects was Dave Cutler, who later led the effort
to develop Microsoft’s Windows NT [C93]. VMS had the general prob-
lem that it would be run on a broad range of machines, including very
inexpensive VAXen (yes, that is the proper plural) to extremely high-end
and powerful machines in the same architecture family. Thus, the OS had
to have mechanisms and policies that worked (and worked well) across
this huge range of systems.

As an additional issue, VMS is an excellent example of software inno-
vations used to hide some of the inherent flaws of the architecture. Al-
though the OS often relies on the hardware to build efficient abstractions
and illusions, sometimes the hardware designers don’t quite get every-
thing right; in the VAX hardware, we’ll see a few examples of this, and
what the VMS operating system does to build an effective, working sys-
tem despite these hardware flaws.

Memory Management Hardware

The VAX-11 provided a 32-bit virtual address space per process, divided
into 512-byte pages. Thus, a virtual address consisted of a 23-bit VPN
and a 9-bit offset. Further, the upper two bits of the VPN were used to
differentiate which segment the page resided within; thus, the system
was a hybrid of paging and segmentation, as we saw previously.

The lower-half of the address space was known as “process space” and
is unique to each process. In the first half of process space (known as P0),
the user program is found, as well as a heap which grows downward.
In the second half of process space (P1), we find the stack, which grows
upwards. The upper-half of the address space is known as system space
(S), although only half of it is used. Protected OS code and data reside
here, and the OS is in this way shared across processes.

One major concern of the VMS designers was the incredibly small size
of pages in the VAX hardware (512 bytes). This size, chosen for historical
reasons, has the fundamental problem of making simple linear page ta-
bles excessively large. Thus, one of the first goals of the VMS designers
was to ensure that VMS would not overwhelm memory with page tables.

The system reduced the pressure page tables place on memory in two
ways. First, by segmenting the user address space into two, the VAX-11
provides a page table for each of these regions (P0 and P1) per process;

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG



COMPLETE VIRTUAL MEMORY SYSTEMS 3

ASIDE: THE CURSE OF GENERALITY

Operating systems often have a problem known as the curse of gener-
ality, where they are tasked with general support for a broad class of
applications and systems. The fundamental result of the curse is that the
OS is not likely to support any one installation very well. In the case of
VMS, the curse was very real, as the VAX-11 architecture was realized
in a number of different implementations. It is no less real today, where
Linux is expected to run well on your phone, a TV set-top box, a laptop
computer, desktop computer, and a high-end server running thousands
of processes in a cloud-based datacenter.

thus, no page-table space is needed for the unused portion of the address
space between the stack and the heap. The base and bounds registers
are used as you would expect; a base register holds the address of the
page table for that segment, and the bounds holds its size (i.e., number of
page-table entries).

Second, the OS reduces memory pressure even further by placing user
page tables (for P0 and P1, thus two per process) in kernel virtual mem-
ory. Thus, when allocating or growing a page table, the kernel allocates
space out of its own virtual memory, in segment S. If memory comes un-
der severe pressure, the kernel can swap pages of these page tables out to
disk, thus making physical memory available for other uses.

Putting page tables in kernel virtual memory means that address trans-
lation is even further complicated. For example, to translate a virtual ad-
dress in P0 or P1, the hardware has to first try to look up the page-table
entry for that page in its page table (the P0 or P1 page table for that pro-
cess); in doing so, however, the hardware may first have to consult the
system page table (which lives in physical memory); with that transla-
tion complete, the hardware can learn the address of the page of the page
table, and then finally learn the address of the desired memory access.
All of this, fortunately, is made faster by the VAX’s hardware-managed
TLBs, which usually (hopefully) circumvent this laborious lookup.

A Real Address Space

One neat aspect of studying VMS is that we can see how a real address
space is constructed (Figure 23.1. Thus far, we have assumed a simple
address space of just user code, user data, and user heap, but as we can
see above, a real address space is notably more complex.

For example, the code segment never begins at page 0. This page,
instead, is marked inaccessible, in order to provide some support for de-
tecting null-pointer accesses. Thus, one concern when designing an ad-
dress space is support for debugging, which the inaccessible zero page
provides here in some form.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES



4 COMPLETE VIRTUAL MEMORY SYSTEMS

Page 0: Invalid

User Code

User Heap

User Stack

Trap Tables

Kernel Data

Kernel Code

Kernel Heap

Unused

System (S)

User (P1)

User (P0)

0

230

231

232

Figure 23.1: The VAX/VMS Address Space

Perhaps more importantly, the kernel virtual address space (i.e., its
data structures and code) is a part of each user address space. On a con-
text switch, the OS changes the P0 and P1 registers to point to the ap-
propriate page tables of the soon-to-be-run process; however, it does not
change the S base and bound registers, and as a result the “same” kernel
structures are mapped into each user address space.

The kernel is mapped into each address space for a number of reasons.
This construction makes life easier for the kernel; when, for example, the
OS is handed a pointer from a user program (e.g., on a write() system
call), it is easy to copy data from that pointer to its own structures. The
OS is naturally written and compiled, without worry of where the data
it is accessing comes from. If in contrast the kernel were located entirely
in physical memory, it would be quite hard to do things like swap pages
of the page table to disk; if the kernel were given its own address space,

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG



COMPLETE VIRTUAL MEMORY SYSTEMS 5

ASIDE: WHY NULL POINTER ACCESSES CAUSE SEG FAULTS

You should now have a good understanding of exactly what happens on
a null-pointer dereference. A process generates a virtual address of 0, by
doing something like this:

int *p = NULL; // set p = 0

*p = 10; // try to store value 10 to virtual address 0

The hardware tries to look up the VPN (also 0 here) in the TLB, and suf-
fers a TLB miss. The page table is consulted, and the entry for VPN 0
is found to be marked invalid. Thus, we have an invalid access, which
transfers control to the OS, which likely terminates the process (on UNIX

systems, processes are sent a signal which allows them to react to such a
fault; if uncaught, however, the process is killed).

moving data between user applications and the kernel would again be
complicated and painful. With this construction (now used widely), the
kernel appears almost as a library to applications, albeit a protected one.

One last point about this address space relates to protection. Clearly,
the OS does not want user applications reading or writing OS data or
code. Thus, the hardware must support different protection levels for
pages to enable this. The VAX did so by specifying, in protection bits
in the page table, what privilege level the CPU must be at in order to
access a particular page. Thus, system data and code are set to a higher
level of protection than user data and code; an attempted access to such
information from user code will generate a trap into the OS, and (you
guessed it) the likely termination of the offending process.

Page Replacement

The page table entry (PTE) in VAX contains the following bits: a valid
bit, a protection field (4 bits), a modify (or dirty) bit, a field reserved for
OS use (5 bits), and finally a physical frame number (PFN) to store the
location of the page in physical memory. The astute reader might note:
no reference bit! Thus, the VMS replacement algorithm must make do
without hardware support for determining which pages are active.

The developers were also concerned about memory hogs, programs
that use a lot of memory and make it hard for other programs to run.
Most of the policies we have looked at thus far are susceptible to such
hogging; for example, LRU is a global policy that doesn’t share memory
fairly among processes.

To address these two problems, the developers came up with the seg-
mented FIFO replacement policy [RL81]. The idea is simple: each process
has a maximum number of pages it can keep in memory, known as its res-
ident set size (RSS). Each of these pages is kept on a FIFO list; when a
process exceeds its RSS, the “first-in” page is evicted. FIFO clearly does

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES



6 COMPLETE VIRTUAL MEMORY SYSTEMS

ASIDE: EMULATING REFERENCE BITS

As it turns out, you don’t need a hardware reference bit in order to get
some notion of which pages are in use in a system. In fact, in the early
1980’s, Babaoglu and Joy showed that protection bits on the VAX can be
used to emulate reference bits [BJ81]. The basic idea: if you want to gain
some understanding of which pages are actively being used in a system,
mark all of the pages in the page table as inaccessible (but keep around
the information as to which pages are really accessible by the process,
perhaps in the “reserved OS field” portion of the page table entry). When
a process accesses a page, it will generate a trap into the OS; the OS will
then check if the page really should be accessible, and if so, revert the
page to its normal protections (e.g., read-only, or read-write). At the time
of a replacement, the OS can check which pages remain marked inacces-
sible, and thus get an idea of which pages have not been recently used.

The key to this “emulation” of reference bits is reducing overhead while
still obtaining a good idea of page usage. The OS must not be too aggres-
sive in marking pages inaccessible, or overhead would be too high. The
OS also must not be too passive in such marking, or all pages will end up
referenced; the OS will again have no good idea which page to evict.

not need any support from the hardware, and is thus easy to implement.
Of course, pure FIFO does not perform particularly well, as we saw

earlier. To improve FIFO’s performance, VMS introduced two second-
chance lists where pages are placed before getting evicted from memory,
specifically a global clean-page free list and dirty-page list. When a process
P exceeds its RSS, a page is removed from its per-process FIFO; if clean
(not modified), it is placed on the end of the clean-page list; if dirty (mod-
ified), it is placed on the end of the dirty-page list.

If another process Q needs a free page, it takes the first free page off
of the global clean list. However, if the original process P faults on that
page before it is reclaimed, P reclaims it from the free (or dirty) list, thus
avoiding a costly disk access. The bigger these global second-chance lists
are, the closer the segmented FIFO algorithm performs to LRU [RL81].

Another optimization used in VMS also helps overcome the small page
size in VMS. Specifically, with such small pages, disk I/O during swap-
ping could be highly inefficient, as disks do better with large transfers.
To make swapping I/O more efficient, VMS adds a number of optimiza-
tions, but most important is clustering. With clustering, VMS groups
large batches of pages together from the global dirty list, and writes them
to disk in one fell swoop (thus making them clean). Clustering is used
in most modern systems, as the freedom to place pages anywhere within
swap space lets the OS group pages, perform fewer and bigger writes,
and thus improve performance.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG



COMPLETE VIRTUAL MEMORY SYSTEMS 7

Other Neat Tricks

VMS had two other now-standard tricks: demand zeroing and copy-on-
write. We now describe these lazy optimizations. One form of laziness
in VMS (and most modern systems) is demand zeroing of pages. To un-
derstand this better, let’s consider the example of adding a page to your
address space, say in your heap. In a naive implementation, the OS re-
sponds to a request to add a page to your heap by finding a page in phys-
ical memory, zeroing it (required for security; otherwise you’d be able to
see what was on the page from when some other process used it!), and
then mapping it into your address space (i.e., setting up the page table to
refer to that physical page as desired). But the naive implementation can
be costly, particularly if the page does not get used by the process.

With demand zeroing, the OS instead does very little work when the
page is added to your address space; it puts an entry in the page table that
marks the page inaccessible. If the process then reads or writes the page,
a trap into the OS takes place. When handling the trap, the OS notices
(usually through some bits marked in the “reserved for OS” portion of the
page table entry) that this is actually a demand-zero page; at this point,
the OS does the needed work of finding a physical page, zeroing it, and
mapping it into the process’s address space. If the process never accesses
the page, all such work is avoided, and thus the virtue of demand zeroing.

Another cool optimization found in VMS (and again, in virtually every
modern OS) is copy-on-write (COW for short). The idea, which goes at
least back to the TENEX operating system [BB+72], is simple: when the
OS needs to copy a page from one address space to another, instead of
copying it, it can map it into the target address space and mark it read-
only in both address spaces. If both address spaces only read the page, no
further action is taken, and thus the OS has realized a fast copy without
actually moving any data.

If, however, one of the address spaces does indeed try to write to the
page, it will trap into the OS. The OS will then notice that the page is a
COW page, and thus (lazily) allocate a new page, fill it with the data, and
map this new page into the address space of the faulting process. The
process then continues and now has its own private copy of the page.

COW is useful for a number of reasons. Certainly any sort of shared
library can be mapped copy-on-write into the address spaces of many
processes, saving valuable memory space. In UNIX systems, COW is
even more critical, due to the semantics of fork() and exec(). As
you might recall, fork() creates an exact copy of the address space of
the caller; with a large address space, making such a copy is slow and
data intensive. Even worse, most of the address space is immediately
over-written by a subsequent call to exec(), which overlays the calling
process’s address space with that of the soon-to-be-exec’d program. By
instead performing a copy-on-write fork(), the OS avoids much of the
needless copying and thus retains the correct semantics while improving
performance.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES



8 COMPLETE VIRTUAL MEMORY SYSTEMS

TIP: BE LAZY

Being lazy can be a virtue in both life as well as in operating systems.
Laziness can put off work until later, which is beneficial within an OS for
a number of reasons. First, putting off work might reduce the latency of
the current operation, thus improving responsiveness; for example, op-
erating systems often report that writes to a file succeeded immediately,
and only write them to disk later in the background. Second, and more
importantly, laziness sometimes obviates the need to do the work at all;
for example, delaying a write until the file is deleted removes the need to
do the write at all. Laziness is also good in life: for example, by putting
off your OS project, you may find that the project specification bugs are
worked out by your fellow classmates; however, the class project is un-
likely to get canceled, so being too lazy may be problematic, leading to a
late project, bad grade, and a sad professor. Don’t make professors sad!

23.2 The Linux Virtual Memory System

We’ll now discuss some of the more interesting aspects of the Linux
VM system. Linux development has been driven forward by real engi-
neers solving real problems encountered in production, and thus a large
number of features have slowly been incorporated into what is now a
fully functional, feature-filled virtual memory system.

While we won’t be able to discuss every aspect of Linux VM, we’ll
touch on the most important ones, especially where it has gone beyond
what is found in classic VM systems such as VAX/VMS. We’ll also try to
highlight commonalities between Linux and older systems.

For this discussion, we’ll focus on Linux for Intel x86. While Linux can
and does run on many different processor architectures, Linux on x86 is
its most dominant and important deployment, and thus the focus of our
attention.

The Linux Address Space

Much like other modern operating systems, and also like VAX/VMS,

a Linux virtual address space1 consists of a user portion (where user
program code, stack, heap, and other parts reside) and a kernel portion
(where kernel code, stacks, heap, and other parts reside). Like those other
systems, upon a context switch, the user portion of the currently-running
address space changes; the kernel portion is the same across processes.
Like those other systems, a program running in user mode cannot access
kernel virtual pages; only by trapping into the kernel and transitioning to
privileged mode can such memory be accessed.

1Until recent changes, due to security threats, that is. Read the subsections below about
Linux security for details on this modification.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

liujunming


liujunming


liujunming




COMPLETE VIRTUAL MEMORY SYSTEMS 9

Page 0: Invalid

User Code

User Heap

User Stack

Kernel (Logical)

Kernel (Virtual)

User

Kernel

0x00000000

0xC0000000

Figure 23.2: The Linux Address Space

In classic 32-bit Linux (i.e., Linux with a 32-bit virtual address space),
the split between user and kernel portions of the address space takes
place at address 0xC0000000, or three-quarters of the way through the
address space. Thus, virtual addresses 0 through 0xBFFFFFFF are user
virtual addresses; the remaining virtual addresses (0xC0000000 through
0xFFFFFFFF) are in the kernel’s virtual address space. 64-bit Linux has a
similar split but at slightly different points. Figure 23.2 shows a depiction
of a typical (simplified) address space.

One slightly interesting aspect of Linux is that it contains two types of
kernel virtual addresses. The first are known as kernel logical addresses
[O16]. This is what you would consider the normal virtual address space
of the kernel; to get more memory of this type, kernel code merely needs
to call kmalloc. Most kernel data structures live here, such as page ta-
bles, per-process kernel stacks, and so forth. Unlike most other memory
in the system, kernel logical memory cannot be swapped to disk.

The most interesting aspect of kernel logical addresses is their con-
nection to physical memory. Specifically, there is a direct mapping be-
tween kernel logical addresses and the first portion of physical memory.
Thus, kernel logical address 0xC0000000 translates to physical address
0x00000000, 0xC0000FFF to 0x00000FFF, and so forth. This direct
mapping has two implications. The first is that it is simple to translate
back and forth between kernel logical addresses and physical addresses;
as a result, these addresses are often treated as if they are indeed physi-
cal. The second is that if a chunk of memory is contiguous in kernel log-
ical address space, it is also contiguous in physical memory. This makes
memory allocated in this part of the kernel’s address space suitable for
operations which need contiguous physical memory to work correctly,
such as I/O transfers to and from devices via directory memory access
(DMA) (something we’ll learn about in the third part of this book).

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

liujunming


liujunming


liujunming


liujunming


liujunming


liujunming


liujunming


liujunming




10 COMPLETE VIRTUAL MEMORY SYSTEMS

The other type of kernel address is a kernel virtual address. To get
memory of this type, kernel code calls a different allocator, vmalloc,
which returns a pointer to a virtually contiguous region of the desired
size. Unlike kernel logical memory, kernel virtual memory is usually not
contiguous; each kernel virtual page may map to non-contiguous physi-
cal pages (and is thus not suitable for DMA). However, such memory is
easier to allocate as a result, and thus used for large buffers where finding
a contiguous large chunk of physical memory would be challenging.

In 32-bit Linux, one other reason for the existence of kernel virtual
addresses is that they enable the kernel to address more than (roughly) 1
GB of memory. Years ago, machines had much less memory than this, and
enabling access to more than 1 GB was not an issue. However, technology
progressed, and soon there was a need to enable the kernel to use larger
amounts of memory. Kernel virtual addresses, and their disconnection
from a strict one-to-one mapping to physical memory, make this possible.
However, with the move to 64-bit Linux, the need is less urgent, because
the kernel is not confined to only the last 1 GB of the virtual address space.

Page Table Structure

Because we are focused on Linux for x86, our discussion will center on
the type of page-table structure provided by x86, as it determines what
Linux can and cannot do. As mentioned before, x86 provides a hardware-
managed, multi-level page table structure, with one page table per pro-
cess; the OS simply sets up mappings in its memory, points a privileged
register at the start of the page directory, and the hardware handles the
rest. The OS gets involved, as expected, at process creation, deletion, and
upon context switches, making sure in each case that the correct page
table is being used by the hardware MMU to perform translations.

Probably the biggest change in recent years is the move from 32-bit
x86 to 64-bit x86, as briefly mentioned above. As seen in the VAX/VMS
system, 32-bit address spaces have been around for a long time, and as
technology changed, they were finally starting to become a real limit for
programs. Virtual memory makes it easy to program systems, but with
modern systems containing many GB of memory, 32 bits were no longer
enough to refer to each of them. Thus, the next leap became necessary.

Moving to a 64-bit address affects page table structure in x86 in the
expected manner. Because x86 uses a multi-level page table, current 64-
bit systems use a four-level table. The full 64-bit nature of the virtual
address space is not yet in use, however, rather only the bottom 48 bits.
Thus, a virtual address can be viewed as follows:

63 47 31 15 0

Unused P1 P2 P3 P4 Offset

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

liujunming


liujunming


liujunming


liujunming


liujunming


liujunming


liujunming




COMPLETE VIRTUAL MEMORY SYSTEMS 11

As you can see in the picture, the top 16 bits of a virtual address are
unused (and thus play no role in translation), the bottom 12 bits (due to
the 4-KB page size) are used as the offset (and hence just used directly,
and not translated), leaving the middle 36 bits of virtual address to take
part in the translation. The P1 portion of the address is used to index into
the topmost page directory, and the translation proceeds from there, one
level at a time, until the actual page of the page table is indexed by P4,
yielding the desired page table entry.

As system memories grow even larger, more parts of this voluminous
address space will become enabled, leading to five-level and eventually
six-level page-table tree structures. Imagine that: a simple page table
lookup requiring six levels of translation, just to figure out where in mem-
ory a certain piece of data resides.

Large Page Support

Intel x86 allows for the use of multiple page sizes, not just the standard 4-
KB page. Specifically, recent designs support 2-MB and even 1-GB pages
in hardware. Thus, over time, Linux has evolved to allow applications to
utilize these huge pages (as they are called in the world of Linux).

Using huge pages, as hinted at earlier, leads to numerous benefits. As
seen in VAX/VMS, doing so reduces the number of mappings that are
needed in the page table; the larger the pages, the fewer the mappings.
However, fewer page-table entries is not the driving force behind huge
pages; rather, it’s better TLB behavior and related performance gains.

When a process actively uses a large amount of memory, it quickly
fills up the TLB with translations. If those translations are for 4-KB pages,
only a small amount of total memory can be accessed without inducing
TLB misses. The result, for modern “big memory” workloads running on
machines with many GBs of memory, is a noticeable performance cost;
recent research shows that some applications spend 10% of their cycles
servicing TLB misses [B+13].

Huge pages allow a process to access a large tract of memory with-
out TLB misses, by using fewer slots in the TLB, and thus is the main
advantage. However, there are other benefits to huge pages: there is a
shorter TLB-miss path, meaning that when a TLB miss does occur, it is
serviced more quickly. In addition, allocation can be quite fast (in certain
scenarios), a small but sometimes important benefit.

One interesting aspect of Linux support for huge pages is how it was
done incrementally. At first, Linux developers knew such support was
only important for a few applications, such as large databases with strin-
gent performance demands. Thus, the decision was made to allow appli-
cations to explicitly request memory allocations with large pages (either
through the mmap() or shmget() calls). In this way, most applications
would be unaffected (and continue to use only 4-KB pages; a few de-
manding applications would have to be changed to use these interfaces,
but for them it would be worth the pain.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

liujunming


liujunming


liujunming


liujunming


liujunming




12 COMPLETE VIRTUAL MEMORY SYSTEMS

TIP: CONSIDER INCREMENTALISM

Many times in life, you are encouraged to be a revolutionary. “Think
big!”, they say. “Change the world!”, they scream. And you can see why
it appealing; in some cases, big changes are needed, and thus pushing
hard for them makes a lot of sense. And, if you try it this way, at least
they might stop yelling at you.

However, in many cases, a slower, more incremental approach might be
the right thing to do. The Linux huge page example in this chapter is
an example of engineering incrementalism; instead of taking the stance
of a fundamentalist and insisting large pages were the way of the future,
developers took the measured approach of first introducing specialized
support for it, learning more about its upsides and downsides, and, only
when there was real reason for it, adding more generic support for all
applications.

Incrementalism, while sometimes scorned, often leads to slow, thought-
ful, and sensible progress. When building systems, such an approach
might just be the thing you need. Indeed, this may be true in life as well.

More recently, as the need for better TLB behavior is more common
among many applications, Linux developers have added transparent huge
page support. When this feature is enabled, the operating system auto-
matically looks for opportunities to allocate huge pages (usually 2 MB,
but on some systems, 1 GB) without requiring application modification.

Huge pages are not without their costs. The biggest potential cost is
internal fragmentation, i.e., a page that is large but sparsely used. This
form of waste can fill memory with large but little used pages. Swapping,
if enabled, also does not work well with huge pages, sometimes greatly
amplifying the amount of I/O a system does. Overhead of allocation
can also be bad (in some other cases). Overall, one thing is clear: the 4-
KB page size which served systems so well for so many years is not the
universal solution it once was; growing memory sizes demand that we
consider large pages and other solutions as part of a necessary evolution
of VM systems. Linux’s slow adoption of this hardware-based technology
is evidence of the coming change.

The Page Cache

To reduce costs of accessing persistent storage (the focus of the third part
of this book), most systems use aggressive caching subsystems to keep
popular data items in memory. Linux, in this regard, is no different than
traditional operating systems.

The Linux page cache is unified, keeping pages in memory from three
primary sources: memory-mapped files, file data and metadata from de-
vices (usually accessed by directing read() and write() calls to the file
system), and heap and stack pages that comprise each process (sometimes
called anonymous memory, because there is no named file underneath of

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

liujunming


liujunming


liujunming


liujunming


liujunming


liujunming


liujunming




COMPLETE VIRTUAL MEMORY SYSTEMS 13

ASIDE: THE UBIQUITY OF MEMORY-MAPPING

Memory mapping predates Linux by some years, and is used in many
places within Linux and other modern systems. The idea is simple: by
calling mmap() on an already opened file descriptor, a process is returned
a pointer to the beginning of a region of virtual memory where the con-
tents of the file seem to be located. By then using that pointer, a process
can access any part of the file with a simple pointer dereference.

Accesses to parts of a memory-mapped file that have not yet been brought
into memory trigger page faults, at which point the OS will page in the
relevant data and make it accessible by updating the page table of the
process accordingly (i.e., demand paging).

Every regular Linux process uses memory-mapped files, even the code
in main() does not call mmap() directly, because of how Linux loads
code from the executable and shared library code into memory. Below
is the (highly abbreviated) output of the pmap command line tool, which
shows what different mapping comprise the virtual address space of a
running program (the shell, in this example, tcsh). The output shows
four columns: the virtual address of the mapping, its size, the protection
bits of the region, and the source of the mapping:

0000000000400000 372K r-x-- tcsh

00000000019d5000 1780K rw--- [anon ]

00007f4e7cf06000 1792K r-x-- libc-2.23.so

00007f4e7d2d0000 36K r-x-- libcrypt-2.23.so

00007f4e7d508000 148K r-x-- libtinfo.so.5.9

00007f4e7d731000 152K r-x-- ld-2.23.so

00007f4e7d932000 16K rw--- [stack ]

As you can see from this output, the code from the tcsh binary, as well
as code from libc, libcrypt, libtinfo, and code from the dynamic
linker itself (ld.so) are all mapped into the address space. Also present
are two anonymous regions, the heap (the second entry, labeled anon)
and the stack (labeled stack). Memory-mapped files provide a straight-
forward and efficient way for the OS to construct a modern address space.

it, but rather swap space). These entities are kept in a page cache hash
table, allowing for quick lookup when said data is needed.

The page cache tracks if entries are clean (read but not updated) or
dirty (a.k.a., modified). Dirty data is periodically written to the back-
ing store (i.e., to a specific file for file data, or to swap space for anony-
mous regions) by background threads (called pdflush), thus ensuring
that modified data eventually is written back to persistent storage. This
background activity either takes place after a certain time period or if too
many pages are considered dirty (both configurable parameters).

In some cases, a system runs low on memory, and Linux has to decide
which pages to kick out of memory to free up space. To do so, Linux uses
a modified form of 2Q replacement [JS94], which we describe here.

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

liujunming




14 COMPLETE VIRTUAL MEMORY SYSTEMS

The basic idea is simple: standard LRU replacement is effective, but
can be subverted by certain common access patterns. For example, if a
process repeatedly accesses a large file (especially one that is nearly the
size of memory, or larger), LRU will kick every other file out of memory.
Even worse: retaining portions of this file in memory isn’t useful, as they
are never re-referenced before getting kicked out of memory.

The Linux version of the 2Q replacement algorithm solves this prob-
lem by keeping two lists, and dividing memory between them. When
accessed for the first time, a page is placed on one queue (called A1 in the
original paper, but the inactive list in Linux); when it is re-referenced, the
page is promoted to the other queue (called Aq in the original, but the ac-
tive list in Linux). When replacement needs to take place, the candidate
for replacement is taken from the inactive list. Linux also periodically
moves pages from the bottom of the active list to the inactive list, keeping
the active list to about two-thirds of the total page cache size [G04].

Linux would ideally manage these lists in perfect LRU order, but, as
discussed in earlier chapters, doing so is costly. Thus, as with many oper-
ating systems, an approximation of LRU similar to the clock replacement
algorithm is utilized.

This 2Q approach generally behaves quite a bit like LRU, but notably
handles the case where a cyclic large-file access occurs by confining the
pages of that cyclic access to the inactive list. Because said pages are never
re-referenced before getting kicked out of memory, they do not flush out
other useful pages found in the active list.

Security And Buffer Overflows

Probably the biggest difference between modern VM systems (Linux, So-
laris, or one of the BSD variants) and ancient ones (VAX/VMS) is the
emphasis on security in the modern era. Protection has always been
a serious concern for operating systems, but with machines more inter-
connected than ever, it is no surprise that developers have implemented
a variety of defensive countermeasures to halt those wily hackers from
gaining control of systems.

One major threat is found in buffer overflow attacks [W18], which can
be used against normal user programs and even the kernel itself. The idea
of these attacks is to find a bug in the target system which lets the attacker
inject arbitrary data into the target’s address space. Such vulnerabilities
sometime arise because the developer assumes (erroneously) that an in-
put will not be overly long, and thus (trustingly) copies the input into a
buffer; because the input is in fact too long, it overflows the buffer, thus
overwriting memory of the target. Code as innocent as the below can be
the source of the problem:

int some_function(char *input) {

char dest_buffer[100];

strcpy(dest_buffer, input); // oops, unbounded copy!

}

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG



COMPLETE VIRTUAL MEMORY SYSTEMS 15

In many cases, such an overflow is not catastrophic, e.g., bad input
innocently given to a user program or even the OS will probably cause it
to crash, but no worse. However, malicious programmers can carefully
craft the input that overflows the buffer so as to inject their own code
into the targeted system, essentially allowing them to take it over and
do their own bidding. If successful upon a network-connected user pro-
gram, attackers can run arbitrary computations or even rent out cycles on
the compromised system; if successful upon the operating system itself,
the attack can access even more resources, and is a form of what is called
privilege escalation (i.e., user code gaining kernel access rights). If you
can’t guess, these are all Bad Things.

The first and most simple defense against buffer overflow is to prevent
execution of any code found within certain regions of an address space
(e.g., within the stack). The NX bit (for No-eXecute), introduced by AMD
into their version of x86 (a similar XD bit is now available on Intel’s), is
one such defense; it just prevents execution from any page which has this
bit set in its corresponding page table entry. The approach prevents code,
injected by an attacker into the target’s stack, from being executed, and
thus mitigates the problem.

However, clever attackers are ... clever, and even when injected code
cannot be added explicitly by the attacker, arbitrary code sequences can
be executed by malicious code. The idea is known, in its most general
form, as a return-oriented programming (ROP) [S07], and really it is
quite brilliant. The observation behind ROP is that there are lots of bits of
code (gadgets, in ROP terminology) within any program’s address space,
especially C programs that link with the voluminous C library. Thus,
an attacker can overwrite the stack such that the return address in the
currently executing function points to a desired malicious instruction (or
series of instructions), followed by a return instruction. By stringing to-
gether a large number of gadgets (i.e., ensuring each return jumps to the
next gadget), the attacker can execute arbitrary code. Amazing!

To defend against ROP (including its earlier form, the return-to-libc
attack [S+04]), Linux (and other systems) add another defense, known
as address space layout randomization (ASLR). Instead of placing code,
stack, and the heap at fixed locations within the virtual address space, the
OS randomizes their placement, thus making it quite challenging to craft
the intricate code sequence required to implement this class of attacks.
Most attacks on vulnerable user programs will thus cause crashes, but
not be able to gain control of the running program.

Interestingly, you can observe this randomness in practice rather eas-
ily. Here’s a piece of code that demonstrates it on a modern Linux system:

#include <stdio.h>

int main(int argc, char *argv[]) {

int stack = 0;

printf("%p\n", &stack);

return 0;

}

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES



16 COMPLETE VIRTUAL MEMORY SYSTEMS

This code just prints out the (virtual) address of a variable on the stack.
In older non-ASLR systems, this value would be the same each time. But,
as you can see below, the value changes with each run:

prompt> ./random

0x7ffd3e55d2b4

prompt> ./random

0x7ffe1033b8f4

prompt> ./random

0x7ffe45522e94

ASLR is such a useful defense for user-level programs that it has also
been incorporated into the kernel, in a feature unimaginatively called ker-
nel address space layout randomization (KASLR). However, it turns out
the kernel may have even bigger problems to handle, as we discuss next.

Other Security Problems: Meltdown And Spectre

As we write these words (August, 2018), the world of systems security
has been turned upside down by two new and related attacks. The first
is called Meltdown, and the second Spectre. They were discovered at
about the same time by four different groups of researchers/engineers,
and have led to deep questioning of the fundamental protections offered
by computer hardware and the OS above. See meltdownattack.com

and spectreattack.com for papers describing each attack in detail.
Spectre is considered the more problematic of the two.

The general weakness exploited in each of these attacks is that the
CPUs found in modern systems perform all sorts of crazy behind-the-
scenes tricks to improve performance. One class of technique that lies
at the core of the problem is called speculative execution, in which the
CPU guesses which instructions will soon be executed in the future, and
starts executing them ahead of time. If the guesses are correct, the pro-
gram runs faster; if not, the CPU undoes their effects on architectural state
(e.g., registers) tries again, this time going down the right path.

The problem with speculation is that it tends to leave traces of its ex-
ecution in various parts of the system, such as processor caches, branch
predictors, etc. And thus the problem: as the authors of the attacks show,
such state can make vulnerable the contents of memory, even memory
that we thought was protected by the MMU.

One avenue to increasing kernel protection was thus to remove as
much of the kernel address space from each user process and instead have
a separate kernel page table for most kernel data (called kernel page-
table isolation, or KPTI) [G+17]. Thus, instead of mapping the kernel’s
code and data structures into each process, only the barest minimum is
kept therein; when switching into the kernel, then, a switch to the kernel
page table is now needed. Doing so improves security and avoids some
attack vectors, but at a cost: performance. Switching page tables is costly.
Ah, the costs of security: convenience and performance.

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG

liujunming


liujunming


liujunming


liujunming


liujunming




COMPLETE VIRTUAL MEMORY SYSTEMS 17

Unfortunately, KPTI doesn’t solve all of the security problems laid out
above, just some of them. And simple solutions, such as turning off spec-
ulation, would make little sense, because systems would run thousands
of times slower. Thus, it is an interesting time to be alive, if systems secu-
rity is your thing.

To truly understand these attacks, you’ll (likely) have to learn a lot
more first. Begin by understanding modern computer architecture, as
found in advanced books on the topic, focusing on speculation and all the
mechanisms needed to implement it. Definitely read about the Meltdown
and Spectre attacks, at the websites mentioned above; they actually also
include a useful primer on speculation, so perhaps are not a bad place to
start. And study the operating system for further vulnerabilities. Who
knows what problems remain?

23.3 Summary

You have now seen a top-to-bottom review of two virtual memory sys-
tems. Hopefully, most of the details were easy to follow, as you should
have already had a good understanding of the basic mechanisms and
policies. More detail on VAX/VMS is available in the excellent (and short)
paper by Levy and Lipman [LL82]. We encourage you to read it, as it is a
great way to see what the source material behind these chapters is like.

You have also learned a bit about Linux. While a large and complex
system, it inherits many good ideas from the past, many of which we
have not had room to discuss in detail. For example, Linux performs lazy
copy-on-write copying of pages upon fork(), thus lowering overheads
by avoiding unnecessary copying. Linux also demand zeroes pages (us-
ing memory-mapping of the /dev/zero device), and has a background
swap daemon (swapd) that swaps pages to disk to reduce memory pres-
sure. Indeed, the VM is filled with good ideas taken from the past, and
also includes many of its own innovations.

To learn more, check out these reasonable (but, alas, outdated) books
[BC05,G04]. We encourage you to read them on your own, as we can
only provide the merest drop from what is an ocean of complexity. But,
you’ve got to start somewhere. What is any ocean, but a multitude of
drops? [M04]

c© 2008–18, ARPACI-DUSSEAU

THREE

EASY

PIECES

liujunming




18 COMPLETE VIRTUAL MEMORY SYSTEMS

References

[B+13] “Efficient Virtual Memory for Big Memory Servers” by A. Basu, J. Gandhi, J. Chang,
M. D. Hill, M. M. Swift. ISCA ’13, June 2013, Tel-Aviv, Israel. A recent work showing that TLBs
matter, consuming 10% of cycles for large-memory workloads. The solution: one massive segment to
hold large data sets. We go backward, so that we can go forward!

[BB+72] “TENEX, A Paged Time Sharing System for the PDP-10” by D. G. Bobrow, J. D. Burch-
fiel, D. L. Murphy, R. S. Tomlinson. CACM, Volume 15, March 1972. An early time-sharing OS
where a number of good ideas came from. Copy-on-write was just one of those; also an inspiration for
other aspects of modern systems, including process management, virtual memory, and file systems.

[BJ81] “Converting a Swap-Based System to do Paging in an Architecture Lacking Page-Reference
Bits” by O. Babaoglu, W. N. Joy. SOSP ’81, Pacific Grove, California, December 1981. How to
exploit existing protection machinery to emulate reference bits, from a group at Berkeley working on
their own version of UNIX: the Berkeley Systems Distribution (BSD). The group was influential in
the development of virtual memory, file systems, and networking.

[BC05] “Understanding the Linux Kernel” by D. P. Bovet, M. Cesati. O’Reilly Media, Novem-
ber 2005. One of the many books you can find on Linux, which are out of date, but still worthwhile.

[C03] “The Innovator’s Dilemma” by Clayton M. Christenson. Harper Paperbacks, January
2003. A fantastic book about the disk-drive industry and how new innovations disrupt existing ones.
A good read for business majors and computer scientists alike. Provides insight on how large and
successful companies completely fail.

[C93] “Inside Windows NT” by H. Custer, D. Solomon. Microsoft Press, 1993. The book about
Windows NT that explains the system top to bottom, in more detail than you might like. But seriously,
a pretty good book.

[G04] “Understanding the Linux Virtual Memory Manager” by M. Gorman. Prentice Hall,
2004. An in-depth look at Linux VM, but alas a little out of date.

[G+17] “KASLR is Dead: Long Live KASLR” by D. Gruss, M. Lipp, M. Schwarz, R. Fell-
ner, C. Maurice, S. Mangard. Engineering Secure Software and Systems, 2017. Available:
https://gruss.cc/files/kaiser.pdf Excellent info on KASLR, KPTI, and beyond.

[JS94] “2Q: A Low Overhead High Performance Buffer Management Replacement Algorithm”
by T. Johnson, D. Shasha. VLDB ’94, Santiago, Chile. A simple but effective approach to building
page replacement.

[LL82] “Virtual Memory Management in the VAX/VMS Operating System” by H. Levy, P.
Lipman. IEEE Computer, Volume 15:3, March 1982. Read the original source of most of this
material. Particularly important if you wish to go to graduate school, where all you do is read papers,
work, read some more papers, work more, eventually write a paper, and then work some more.

[M04] “Cloud Atlas” by D. Mitchell. Random House, 2004. It’s hard to pick a favorite book. There
are too many! Each is great in its own unique way. But it’d be hard for these authors not to pick “Cloud
Atlas”, a fantastic, sprawling epic about the human condition, from where the the last quote of this
chapter is lifted. If you are smart – and we think you are – you should stop reading obscure commentary
in the references and instead read “Cloud Atlas”; you’ll thank us later.

[O16] “Virtual Memory and Linux” by A. Ott. Embedded Linux Conference, April 2016.
https://events.static.linuxfound.org/sites/events/files/slides/elc 2016 mem.pdf . A useful
set of slides which gives an overview of the Linux VM.

[RL81] “Segmented FIFO Page Replacement” by R. Turner, H. Levy. SIGMETRICS ’81, Las
Vegas, Nevada, September 1981. A short paper that shows for some workloads, segmented FIFO can
approach the performance of LRU.

[S07] “The Geometry of Innocent Flesh on the Bone: Return-into-libc without Function Calls
(on the x86)” by H. Shacham. CCS ’07, October 2007. A generalization of return-to-libc. Dr. Beth
Garner said in Basic Instinct, “She’s crazy! She’s brilliant!” We might say the same about ROP.

[S+04] “On the Effectiveness of Address-space Randomization” by H. Shacham, M. Page, B.
Pfaff, E. J. Goh, N. Modadugu, D. Boneh. CCS ’04, October 2004. A description of the return-to-
libc attack and its limits. Start reading, but be wary: the rabbit hole of systems security is deep...

OPERATING

SYSTEMS

[VERSION 1.00] WWW.OSTEP.ORG


