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Semaphores

As we know now, one needs both locks and condition variables to solve
a broad range of relevant and interesting concurrency problems. One of
the first people to realize this years ago was Edsger Dijkstra (though it
is hard to know the exact history [GR92]), known among other things for
his famous “shortest paths” algorithm in graph theory [D59], an early
polemic on structured programming entitled “Goto Statements Consid-
ered Harmful” [D68a] (what a great title!), and, in the case we will study
here, the introduction of a synchronization primitive called the semaphore
[D68b,D72]. Indeed, Dijkstra and colleagues invented the semaphore as a
single primitive for all things related to synchronization; as you will see,
one can use semaphores as both locks and condition variables.

THE CRUX: HOW TO USE SEMAPHORES

How can we use semaphores instead of locks and condition variables?
What is the definition of a semaphore? What is a binary semaphore? Is
it straightforward to build a semaphore out of locks and condition vari-
ables? To build locks and condition variables out of semaphores?

31.1 Semaphores: A Definition

A semaphore is an object with an integer value that we can manipulate
with two routines; in the POSIX standard, these routines are sem wait()

and sem post()1. Because the initial value of the semaphore deter-
mines its behavior, before calling any other routine to interact with the
semaphore, we must first initialize it to some value, as the code in Figure
31.1 does.

1Historically, sem wait() was called P() by Dijkstra and sem post() called V(). P()
comes from “prolaag”, a contraction of “probeer” (Dutch for “try”) and “verlaag” (“de-
crease”); V() comes from the Dutch word “verhoog” which means “increase” (thanks to Mart
Oskamp for this information). Sometimes, people call them down and up. Use the Dutch
versions to impress your friends, or confuse them, or both.
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2 SEMAPHORES

1 #include <semaphore.h>

2 sem_t s;

3 sem_init(&s, 0, 1);

Figure 31.1: Initializing A Semaphore

In the figure, we declare a semaphore s and initialize it to the value 1
by passing 1 in as the third argument. The second argument to sem init()

will be set to 0 in all of the examples we’ll see; this indicates that the
semaphore is shared between threads in the same process. See the man
page for details on other usages of semaphores (namely, how they can
be used to synchronize access across different processes), which require a
different value for that second argument.

After a semaphore is initialized, we can call one of two functions to
interact with it, sem wait() or sem post(). The behavior of these two
functions is seen in Figure 31.2.

For now, we are not concerned with the implementation of these rou-
tines, which clearly requires some care; with multiple threads calling into
sem wait() and sem post(), there is the obvious need for managing
these critical sections. We will now focus on how to use these primitives;
later we may discuss how they are built.

We should discuss a few salient aspects of the interfaces here. First, we
can see that sem wait() will either return right away (because the value
of the semaphore was one or higher when we called sem wait()), or it
will cause the caller to suspend execution waiting for a subsequent post.
Of course, multiple calling threads may call into sem wait(), and thus
all be queued waiting to be woken.

Second, we can see that sem post() does not wait for some particular
condition to hold like sem wait() does. Rather, it simply increments the
value of the semaphore and then, if there is a thread waiting to be woken,
wakes one of them up.

Third, the value of the semaphore, when negative, is equal to the num-
ber of waiting threads [D68b]. Though the value generally isn’t seen by
users of the semaphores, this invariant is worth knowing and perhaps
can help you remember how a semaphore functions.

Don’t worry (yet) about the seeming race conditions possible within
the semaphore; assume that the actions they make are performed atomi-
cally. We will soon use locks and condition variables to do just this.

1 int sem_wait(sem_t *s) {

2 decrement the value of semaphore s by one

3 wait if value of semaphore s is negative

4 }

5

6 int sem_post(sem_t *s) {

7 increment the value of semaphore s by one

8 if there are one or more threads waiting, wake one

9 }

Figure 31.2: Semaphore: Definitions Of Wait And Post
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SEMAPHORES 3

1 sem_t m;

2 sem_init(&m, 0, X); // initialize semaphore to X; what should X be?

3

4 sem_wait(&m);

5 // critical section here

6 sem_post(&m);

Figure 31.3: A Binary Semaphore (That Is, A Lock)

31.2 Binary Semaphores (Locks)

We are now ready to use a semaphore. Our first use will be one with
which we are already familiar: using a semaphore as a lock. See Figure
31.3 for a code snippet; therein, you’ll see that we simply surround the
critical section of interest with a sem wait()/sem post() pair. Criti-
cal to making this work, though, is the initial value of the semaphore m
(initialized to X in the figure). What should X be?

... (Try thinking about it before going on) ...
Looking back at definition of the sem wait() and sem post() rou-

tines above, we can see that the initial value should be 1.
To make this clear, let’s imagine a scenario with two threads. The first

thread (Thread 0) calls sem wait(); it will first decrement the value of
the semaphore, changing it to 0. Then, it will wait only if the value is
not greater than or equal to 0. Because the value is 0, sem wait() will
simply return and the calling thread will continue; Thread 0 is now free to
enter the critical section. If no other thread tries to acquire the lock while
Thread 0 is inside the critical section, when it calls sem post(), it will
simply restore the value of the semaphore to 1 (and not wake a waiting
thread, because there are none). Figure 31.4 shows a trace of this scenario.

A more interesting case arises when Thread 0 “holds the lock” (i.e.,
it has called sem wait() but not yet called sem post()), and another
thread (Thread 1) tries to enter the critical section by calling sem wait().
In this case, Thread 1 will decrement the value of the semaphore to -1, and
thus wait (putting itself to sleep and relinquishing the processor). When
Thread 0 runs again, it will eventually call sem post(), incrementing the
value of the semaphore back to zero, and then wake the waiting thread
(Thread 1), which will then be able to acquire the lock for itself. When
Thread 1 finishes, it will again increment the value of the semaphore,
restoring it to 1 again.

Value of Semaphore Thread 0 Thread 1

1
1 call sem wait()

0 sem wait() returns
0 (crit sect)

0 call sem post()

1 sem post() returns

Figure 31.4: Thread Trace: Single Thread Using A Semaphore
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4 SEMAPHORES

Value Thread 0 State Thread 1 State
1 Running Ready
1 call sem wait() Running Ready
0 sem wait() returns Running Ready
0 (crit sect: begin) Running Ready
0 Interrupt; Switch→T1 Ready Running
0 Ready call sem wait() Running
-1 Ready decrement sem Running
-1 Ready (sem<0)→sleep Sleeping
-1 Running Switch→T0 Sleeping
-1 (crit sect: end) Running Sleeping
-1 call sem post() Running Sleeping
0 increment sem Running Sleeping
0 wake(T1) Running Ready
0 sem post() returns Running Ready
0 Interrupt; Switch→T1 Ready Running
0 Ready sem wait() returns Running
0 Ready (crit sect) Running
0 Ready call sem post() Running
1 Ready sem post() returns Running

Figure 31.5: Thread Trace: Two Threads Using A Semaphore

Figure 31.5 shows a trace of this example. In addition to thread actions,
the figure shows the scheduler state of each thread: Running, Ready (i.e.,
runnable but not running), and Sleeping. Note in particular that Thread 1
goes into the sleeping state when it tries to acquire the already-held lock;
only when Thread 0 runs again can Thread 1 be awoken and potentially
run again.

If you want to work through your own example, try a scenario where
multiple threads queue up waiting for a lock. What would the value of
the semaphore be during such a trace?

Thus we are able to use semaphores as locks. Because locks only have
two states (held and not held), we sometimes call a semaphore used as a
lock a binary semaphore. Note that if you are using a semaphore only
in this binary fashion, it could be implemented in a simpler manner than
the generalized semaphores we present here.

31.3 Semaphores For Ordering

Semaphores are also useful to order events in a concurrent program.
For example, a thread may wish to wait for a list to become non-empty,
so it can delete an element from it. In this pattern of usage, we often find
one thread waiting for something to happen, and another thread making
that something happen and then signaling that it has happened, thus wak-
ing the waiting thread. We are thus using the semaphore as an ordering
primitive (similar to our use of condition variables earlier).
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SEMAPHORES 5

1 sem_t s;

2

3 void *
4 child(void *arg) {

5 printf("child\n");

6 sem_post(&s); // signal here: child is done

7 return NULL;

8 }

9

10 int

11 main(int argc, char *argv[]) {

12 sem_init(&s, 0, X); // what should X be?

13 printf("parent: begin\n");

14 pthread_t c;

15 Pthread_create(&c, NULL, child, NULL);

16 sem_wait(&s); // wait here for child

17 printf("parent: end\n");

18 return 0;

19 }

Figure 31.6: A Parent Waiting For Its Child

A simple example is as follows. Imagine a thread creates another
thread and then wants to wait for it to complete its execution (Figure
31.6). When this program runs, we would like to see the following:
parent: begin

child

parent: end

The question, then, is how to use a semaphore to achieve this effect; as
it turns out, the answer is relatively easy to understand. As you can see in
the code, the parent simply calls sem wait() and the child sem post()

to wait for the condition of the child finishing its execution to become
true. However, this raises the question: what should the initial value of
this semaphore be?

(Again, think about it here, instead of reading ahead)
The answer, of course, is that the value of the semaphore should be set

to is 0. There are two cases to consider. First, let us assume that the parent
creates the child but the child has not run yet (i.e., it is sitting in a ready
queue but not running). In this case (Figure 31.7, page 6), the parent will
call sem wait() before the child has called sem post(); we’d like the
parent to wait for the child to run. The only way this will happen is if the
value of the semaphore is not greater than 0; hence, 0 is the initial value.
The parent runs, decrements the semaphore (to -1), then waits (sleeping).
When the child finally runs, it will call sem post(), increment the value
of the semaphore to 0, and wake the parent, which will then return from
sem wait() and finish the program.

The second case (Figure 31.8, page 6) occurs when the child runs to
completion before the parent gets a chance to call sem wait(). In this
case, the child will first call sem post(), thus incrementing the value of
the semaphore from 0 to 1. When the parent then gets a chance to run,
it will call sem wait() and find the value of the semaphore to be 1; the
parent will thus decrement the value (to 0) and return from sem wait()

without waiting, also achieving the desired effect.
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6 SEMAPHORES

Value Parent State Child State
0 create(Child) Running (Child exists; is runnable) Ready
0 call sem wait() Running Ready
-1 decrement sem Running Ready
-1 (sem<0)→sleep Sleeping Ready
-1 Switch→Child Sleeping child runs Running
-1 Sleeping call sem post() Running
0 Sleeping increment sem Running
0 Ready wake(Parent) Running
0 Ready sem post() returns Running
0 Ready Interrupt; Switch→Parent Ready
0 sem wait() returns Running Ready

Figure 31.7: Thread Trace: Parent Waiting For Child (Case 1)

Value Parent State Child State
0 create(Child) Running (Child exists; is runnable) Ready
0 Interrupt; Switch→Child Ready child runs Running
0 Ready call sem post() Running
1 Ready increment sem Running
1 Ready wake(nobody) Running
1 Ready sem post() returns Running
1 parent runs Running Interrupt; Switch→Parent Ready
1 call sem wait() Running Ready
0 decrement sem Running Ready
0 (sem≥0)→awake Running Ready
0 sem wait() returns Running Ready

Figure 31.8: Thread Trace: Parent Waiting For Child (Case 2)

31.4 The Producer/Consumer (Bounded Buffer) Problem

The next problem we will confront in this chapter is known as the pro-
ducer/consumer problem, or sometimes as the bounded buffer problem
[D72]. This problem is described in detail in the previous chapter on con-
dition variables; see there for details.

First Attempt

Our first attempt at solving the problem introduces two semaphores, empty
and full, which the threads will use to indicate when a buffer entry has
been emptied or filled, respectively. The code for the put and get routines
is in Figure 31.9, and our attempt at solving the producer and consumer
problem is in Figure 31.10.

In this example, the producer first waits for a buffer to become empty
in order to put data into it, and the consumer similarly waits for a buffer
to become filled before using it. Let us first imagine that MAX=1 (there is
only one buffer in the array), and see if this works.

Imagine again there are two threads, a producer and a consumer. Let
us examine a specific scenario on a single CPU. Assume the consumer
gets to run first. Thus, the consumer will hit Line C1 in Figure 31.10,
calling sem wait(&full). Because full was initialized to the value 0,
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SEMAPHORES 7

1 int buffer[MAX];

2 int fill = 0;

3 int use = 0;

4

5 void put(int value) {

6 buffer[fill] = value; // Line F1

7 fill = (fill + 1) % MAX; // Line F2

8 }

9

10 int get() {

11 int tmp = buffer[use]; // Line G1

12 use = (use + 1) % MAX; // Line G2

13 return tmp;

14 }

Figure 31.9: The Put And Get Routines

1 sem_t empty;

2 sem_t full;

3

4 void *producer(void *arg) {

5 int i;

6 for (i = 0; i < loops; i++) {

7 sem_wait(&empty); // Line P1

8 put(i); // Line P2

9 sem_post(&full); // Line P3

10 }

11 }

12

13 void *consumer(void *arg) {

14 int i, tmp = 0;

15 while (tmp != -1) {

16 sem_wait(&full); // Line C1

17 tmp = get(); // Line C2

18 sem_post(&empty); // Line C3

19 printf("%d\n", tmp);

20 }

21 }

22

23 int main(int argc, char *argv[]) {

24 // ...

25 sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...

26 sem_init(&full, 0, 0); // ... and 0 are full

27 // ...

28 }

Figure 31.10: Adding The Full And Empty Conditions

the call will decrement full (to -1), block the consumer, and wait for
another thread to call sem post() on full, as desired.

Assume the producer then runs. It will hit Line P1, thus calling the
sem wait(&empty) routine. Unlike the consumer, the producer will
continue through this Line, because empty was initialized to the value
MAX (in this case, 1). Thus, empty will be decremented to 0 and the
producer will put a data value into the first entry of buffer (Line P2). The
producer will then continue on to P3 and call sem post(&full), chang-
ing the value of the full semaphore from -1 to 0 and waking the consumer
(e.g., move it from blocked to ready).
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8 SEMAPHORES

In this case, one of two things could happen. If the producer contin-
ues to run, it will loop around and hit Line P1 again. This time, how-
ever, it would block, as the empty semaphore’s value is 0. If the producer
instead was interrupted and the consumer began to run, it would call
sem wait(&full) (Line C1) and find that the buffer was indeed full
and thus consume it. In either case, we achieve the desired behavior.

You can try this same example with more threads (e.g., multiple pro-
ducers, and multiple consumers). It should still work.

Let us now imagine that MAX is greater than 1 (say MAX = 10). For this
example, let us assume that there are multiple producers and multiple
consumers. We now have a problem: a race condition. Do you see where
it occurs? (take some time and look for it) If you can’t see it, here’s a hint:
look more closely at the put() and get() code.

OK, let’s understand the issue. Imagine two producers (Pa and Pb)
both calling into put() at roughly the same time. Assume producer Pa gets
to run first, and just starts to fill the first buffer entry (fill = 0 at Line F1).
Before Pa gets a chance to increment the fill counter to 1, it is interrupted.
Producer Pb starts to run, and at Line F1 it also puts its data into the
0th element of buffer, which means that the old data there is overwritten!
This is a no-no; we don’t want any data from the producer to be lost.

A Solution: Adding Mutual Exclusion

As you can see, what we’ve forgotten here is mutual exclusion. The
filling of a buffer and incrementing of the index into the buffer is a critical
section, and thus must be guarded carefully. So let’s use our friend the
binary semaphore and add some locks. Figure 31.11 shows our attempt.

Now we’ve added some locks around the entire put()/get() parts of
the code, as indicated by the NEW LINE comments. That seems like the
right idea, but it also doesn’t work. Why? Deadlock. Why does deadlock
occur? Take a moment to consider it; try to find a case where deadlock
arises. What sequence of steps must happen for the program to deadlock?

Avoiding Deadlock

OK, now that you figured it out, here is the answer. Imagine two threads,
one producer and one consumer. The consumer gets to run first. It
acquires the mutex (Line C0), and then calls sem wait() on the full
semaphore (Line C1); because there is no data yet, this call causes the
consumer to block and thus yield the CPU; importantly, though, the con-
sumer still holds the lock.

A producer then runs. It has data to produce and if it were able to run,
it would be able to wake the consumer thread and all would be good. Un-
fortunately, the first thing it does is call sem wait() on the binary mutex
semaphore (Line P0). The lock is already held. Hence, the producer is
now stuck waiting too.
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SEMAPHORES 9

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {

8 sem_wait(&mutex); // Line P0 (NEW LINE)

9 sem_wait(&empty); // Line P1

10 put(i); // Line P2

11 sem_post(&full); // Line P3

12 sem_post(&mutex); // Line P4 (NEW LINE)

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 sem_wait(&mutex); // Line C0 (NEW LINE)

20 sem_wait(&full); // Line C1

21 int tmp = get(); // Line C2

22 sem_post(&empty); // Line C3

23 sem_post(&mutex); // Line C4 (NEW LINE)

24 printf("%d\n", tmp);

25 }

26 }

27

28 int main(int argc, char *argv[]) {

29 // ...

30 sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...

31 sem_init(&full, 0, 0); // ... and 0 are full

32 sem_init(&mutex, 0, 1); // mutex=1 because it is a lock (NEW LINE)

33 // ...

34 }

Figure 31.11: Adding Mutual Exclusion (Incorrectly)

There is a simple cycle here. The consumer holds the mutex and is
waiting for the someone to signal full. The producer could signal full but
is waiting for the mutex. Thus, the producer and consumer are each stuck
waiting for each other: a classic deadlock.

At Last, A Working Solution

To solve this problem, we simply must reduce the scope of the lock. Fig-
ure 31.12 shows the correct solution. As you can see, we simply move the
mutex acquire and release to be just around the critical section; the full
and empty wait and signal code is left outside. The result is a simple and
working bounded buffer, a commonly-used pattern in multi-threaded
programs. Understand it now; use it later. You will thank us for years
to come. Or at least, you will thank us when the same question is asked
on the final exam.
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10 SEMAPHORES

1 sem_t empty;

2 sem_t full;

3 sem_t mutex;

4

5 void *producer(void *arg) {

6 int i;

7 for (i = 0; i < loops; i++) {

8 sem_wait(&empty); // Line P1

9 sem_wait(&mutex); // Line P1.5 (MOVED MUTEX HERE...)

10 put(i); // Line P2

11 sem_post(&mutex); // Line P2.5 (... AND HERE)

12 sem_post(&full); // Line P3

13 }

14 }

15

16 void *consumer(void *arg) {

17 int i;

18 for (i = 0; i < loops; i++) {

19 sem_wait(&full); // Line C1

20 sem_wait(&mutex); // Line C1.5 (MOVED MUTEX HERE...)

21 int tmp = get(); // Line C2

22 sem_post(&mutex); // Line C2.5 (... AND HERE)

23 sem_post(&empty); // Line C3

24 printf("%d\n", tmp);

25 }

26 }

27

28 int main(int argc, char *argv[]) {

29 // ...

30 sem_init(&empty, 0, MAX); // MAX buffers are empty to begin with...

31 sem_init(&full, 0, 0); // ... and 0 are full

32 sem_init(&mutex, 0, 1); // mutex=1 because it is a lock

33 // ...

34 }

Figure 31.12: Adding Mutual Exclusion (Correctly)

31.5 Reader-Writer Locks

Another classic problem stems from the desire for a more flexible lock-
ing primitive that admits that different data structure accesses might re-
quire different kinds of locking. For example, imagine a number of con-
current list operations, including inserts and simple lookups. While in-
serts change the state of the list (and thus a traditional critical section
makes sense), lookups simply read the data structure; as long as we can
guarantee that no insert is on-going, we can allow many lookups to pro-
ceed concurrently. The special type of lock we will now develop to sup-
port this type of operation is known as a reader-writer lock [CHP71]. The
code for such a lock is available in Figure 31.13.

The code is pretty simple. If some thread wants to update the data
structure in question, it should call the new pair of synchronization op-
erations: rwlock acquire writelock(), to acquire a write lock, and
rwlock release writelock(), to release it. Internally, these simply
use the writelock semaphore to ensure that only a single writer can ac-
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SEMAPHORES 11

1 typedef struct _rwlock_t {

2 sem_t lock; // binary semaphore (basic lock)

3 sem_t writelock; // used to allow ONE writer or MANY readers

4 int readers; // count of readers reading in critical section

5 } rwlock_t;

6

7 void rwlock_init(rwlock_t *rw) {

8 rw->readers = 0;

9 sem_init(&rw->lock, 0, 1);

10 sem_init(&rw->writelock, 0, 1);

11 }

12

13 void rwlock_acquire_readlock(rwlock_t *rw) {

14 sem_wait(&rw->lock);

15 rw->readers++;

16 if (rw->readers == 1)

17 sem_wait(&rw->writelock); // first reader acquires writelock

18 sem_post(&rw->lock);

19 }

20

21 void rwlock_release_readlock(rwlock_t *rw) {

22 sem_wait(&rw->lock);

23 rw->readers--;

24 if (rw->readers == 0)

25 sem_post(&rw->writelock); // last reader releases writelock

26 sem_post(&rw->lock);

27 }

28

29 void rwlock_acquire_writelock(rwlock_t *rw) {

30 sem_wait(&rw->writelock);

31 }

32

33 void rwlock_release_writelock(rwlock_t *rw) {

34 sem_post(&rw->writelock);

35 }

Figure 31.13: A Simple Reader-Writer Lock

quire the lock and thus enter the critical section to update the data struc-
ture in question.

More interesting is the pair of routines to acquire and release read
locks. When acquiring a read lock, the reader first acquires lock and
then increments the readers variable to track how many readers are
currently inside the data structure. The important step then taken within
rwlock acquire readlock() occurs when the first reader acquires
the lock; in that case, the reader also acquires the write lock by calling
sem wait() on the writelock semaphore, and then releasing the lock
by calling sem post().

Thus, once a reader has acquired a read lock, more readers will be
allowed to acquire the read lock too; however, any thread that wishes to
acquire the write lock will have to wait until all readers are finished; the
last one to exit the critical section calls sem post() on “writelock” and
thus enables a waiting writer to acquire the lock.

This approach works (as desired), but does have some negatives, espe-
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12 SEMAPHORES

TIP: SIMPLE AND DUMB CAN BE BETTER (HILL’S LAW)
You should never underestimate the notion that the simple and dumb
approach can be the best one. With locking, sometimes a simple spin lock
works best, because it is easy to implement and fast. Although something
like reader/writer locks sounds cool, they are complex, and complex can
mean slow. Thus, always try the simple and dumb approach first.

This idea, of appealing to simplicity, is found in many places. One early
source is Mark Hill’s dissertation [H87], which studied how to design
caches for CPUs. Hill found that simple direct-mapped caches worked
better than fancy set-associative designs (one reason is that in caching,
simpler designs enable faster lookups). As Hill succinctly summarized
his work: “Big and dumb is better.” And thus we call this similar advice
Hill’s Law.

cially when it comes to fairness. In particular, it would be relatively easy
for readers to starve writers. More sophisticated solutions to this prob-
lem exist; perhaps you can think of a better implementation? Hint: think
about what you would need to do to prevent more readers from entering
the lock once a writer is waiting.

Finally, it should be noted that reader-writer locks should be used
with some caution. They often add more overhead (especially with more
sophisticated implementations), and thus do not end up speeding up
performance as compared to just using simple and fast locking primi-
tives [CB08]. Either way, they showcase once again how we can use
semaphores in an interesting and useful way.

31.6 The Dining Philosophers

One of the most famous concurrency problems posed, and solved, by
Dijkstra, is known as the dining philosopher’s problem [D71]. The prob-
lem is famous because it is fun and somewhat intellectually interesting;
however, its practical utility is low. However, its fame forces its inclu-
sion here; indeed, you might be asked about it on some interview, and
you’d really hate your OS professor if you miss that question and don’t
get the job. Conversely, if you get the job, please feel free to send your OS
professor a nice note, or some stock options.

The basic setup for the problem is this (as shown in Figure 31.14): as-
sume there are five “philosophers” sitting around a table. Between each
pair of philosophers is a single fork (and thus, five total). The philoso-
phers each have times where they think, and don’t need any forks, and
times where they eat. In order to eat, a philosopher needs two forks, both
the one on their left and the one on their right. The contention for these
forks, and the synchronization problems that ensue, are what makes this
a problem we study in concurrent programming.
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SEMAPHORES 13

P0

P1

P2

P3

P4

f0

f1

f2

f3

f4

Figure 31.14: The Dining Philosophers

Here is the basic loop of each philosopher:

while (1) {

think();

getforks();

eat();

putforks();

}

The key challenge, then, is to write the routines getforks() and
putforks() such that there is no deadlock, no philosopher starves and
never gets to eat, and concurrency is high (i.e., as many philosophers can
eat at the same time as possible).

Following Downey’s solutions [D08], we’ll use a few helper functions
to get us towards a solution. They are:

int left(int p) { return p; }

int right(int p) { return (p + 1) % 5; }

When philosopher p wishes to refer to the fork on their left, they sim-
ply call left(p). Similarly, the fork on the right of a philosopher p is
referred to by calling right(p); the modulo operator therein handles
the one case where the last philosopher (p=4) tries to grab the fork on
their right, which is fork 0.

We’ll also need some semaphores to solve this problem. Let us assume
we have five, one for each fork: sem t forks[5].
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14 SEMAPHORES

1 void getforks() {

2 sem_wait(forks[left(p)]);

3 sem_wait(forks[right(p)]);

4 }

5

6 void putforks() {

7 sem_post(forks[left(p)]);

8 sem_post(forks[right(p)]);

9 }

Figure 31.15: The getforks() And putforks() Routines

Broken Solution

We attempt our first solution to the problem. Assume we initialize each
semaphore (in the forks array) to a value of 1. Assume also that each
philosopher knows its own number (p). We can thus write the getforks()
and putforks() routine as shown in Figure 31.15.

The intuition behind this (broken) solution is as follows. To acquire
the forks, we simply grab a “lock” on each one: first the one on the left,
and then the one on the right. When we are done eating, we release them.
Simple, no? Unfortunately, in this case, simple means broken. Can you
see the problem that arises? Think about it.

The problem is deadlock. If each philosopher happens to grab the fork
on their left before any philosopher can grab the fork on their right, each
will be stuck holding one fork and waiting for another, forever. Specifi-
cally, philosopher 0 grabs fork 0, philosopher 1 grabs fork 1, philosopher
2 grabs fork 2, philosopher 3 grabs fork 3, and philosopher 4 grabs fork 4;
all the forks are acquired, and all the philosophers are stuck waiting for
a fork that another philosopher possesses. We’ll study deadlock in more
detail soon; for now, it is safe to say that this is not a working solution.

A Solution: Breaking The Dependency

The simplest way to attack this problem is to change how forks are ac-
quired by at least one of the philosophers; indeed, this is how Dijkstra
himself solved the problem. Specifically, let’s assume that philosopher
4 (the highest numbered one) acquires the forks in a different order. The
code to do so is as follows:

1 void getforks() {

2 if (p == 4) {

3 sem_wait(forks[right(p)]);

4 sem_wait(forks[left(p)]);

5 } else {

6 sem_wait(forks[left(p)]);

7 sem_wait(forks[right(p)]);

8 }

9 }

Because the last philosopher tries to grab right before left, there is no
situation where each philosopher grabs one fork and is stuck waiting for
another; the cycle of waiting is broken. Think through the ramifications
of this solution, and convince yourself that it works.
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1 typedef struct __Zem_t {

2 int value;

3 pthread_cond_t cond;

4 pthread_mutex_t lock;

5 } Zem_t;

6

7 // only one thread can call this

8 void Zem_init(Zem_t *s, int value) {

9 s->value = value;

10 Cond_init(&s->cond);

11 Mutex_init(&s->lock);

12 }

13

14 void Zem_wait(Zem_t *s) {

15 Mutex_lock(&s->lock);

16 while (s->value <= 0)

17 Cond_wait(&s->cond, &s->lock);

18 s->value--;

19 Mutex_unlock(&s->lock);

20 }

21

22 void Zem_post(Zem_t *s) {

23 Mutex_lock(&s->lock);

24 s->value++;

25 Cond_signal(&s->cond);

26 Mutex_unlock(&s->lock);

27 }

Figure 31.16: Implementing Zemaphores With Locks And CVs

There are other “famous” problems like this one, e.g., the cigarette
smoker’s problem or the sleeping barber problem. Most of them are
just excuses to think about concurrency; some of them have fascinating
names. Look them up if you are interested in learning more, or just get-
ting more practice thinking in a concurrent manner [D08].

31.7 How To Implement Semaphores

Finally, let’s use our low-level synchronization primitives, locks and
condition variables, to build our own version of semaphores called ...
(drum roll here) ... Zemaphores. This task is fairly straightforward, as
you can see in Figure 31.16.

As you can see from the figure, we use just one lock and one condition
variable, plus a state variable to track the value of the semaphore. Study
the code for yourself until you really understand it. Do it!

One subtle difference between our Zemaphore and pure semaphores
as defined by Dijkstra is that we don’t maintain the invariant that the
value of the semaphore, when negative, reflects the number of waiting
threads; indeed, the value will never be lower than zero. This behavior is
easier to implement and matches the current Linux implementation.
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16 SEMAPHORES

TIP: BE CAREFUL WITH GENERALIZATION

The abstract technique of generalization can thus be quite useful in sys-
tems design, where one good idea can be made slightly broader and thus
solve a larger class of problems. However, be careful when generalizing;
as Lampson warns us “Don’t generalize; generalizations are generally
wrong” [L83].

One could view semaphores as a generalization of locks and condition
variables; however, is such a generalization needed? And, given the dif-
ficulty of realizing a condition variable on top of a semaphore, perhaps
this generalization is not as general as you might think.

Curiously, building condition variables out of semaphores is a much
trickier proposition. Some highly experienced concurrent programmers
tried to do this in the Windows environment, and many different bugs
ensued [B04]. Try it yourself, and see if you can figure out why building
condition variables out of semaphores is more challenging than it might
appear.

31.8 Summary

Semaphores are a powerful and flexible primitive for writing concur-
rent programs. Some programmers use them exclusively, shunning locks
and condition variables, due to their simplicity and utility.

In this chapter, we have presented just a few classic problems and solu-
tions. If you are interested in finding out more, there are many other ma-
terials you can reference. One great (and free reference) is Allen Downey’s
book on concurrency and programming with semaphores [D08]. This
book has lots of puzzles you can work on to improve your understand-
ing of both semaphores in specific and concurrency in general. Becoming
a real concurrency expert takes years of effort; going beyond what you
learn in this class is undoubtedly the key to mastering such a topic.
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Homework (Code)

In this homework, we’ll use semaphores to solve some well-known
concurrency problems. Many of these are taken from Downey’s excellent

“Little Book of Semaphores”2, which does a good job of pulling together
a number of classic problems as well as introducing a few new variants;
interested readers should check out the Little Book for more fun.

Each of the following questions provides a code skeleton; your job is
to fill in the code to make it work given semaphores. On Linux, you
will be using native semaphores; on a Mac (where there is no semaphore
support), you’ll have to first build an implementation (using locks and
condition variables, as described in the chapter). Good luck!

Questions

1. The first problem is just to implement and test a solution to the fork/join
problem, as described in the text. Even though this solution is described in
the text, the act of typing it in on your own is worthwhile; even Bach would
rewrite Vivaldi, allowing one soon-to-be master to learn from an existing
one. See fork-join.c for details. Add the call sleep(1) to the child to
ensure it is working.

2. Let’s now generalize this a bit by investigating the rendezvous problem.
The problem is as follows: you have two threads, each of which are about
to enter the rendezvous point in the code. Neither should exit this part of
the code before the other enters it. Consider using two semaphores for this
task, and see rendezvous.c for details.

3. Now go one step further by implementing a general solution to barrier syn-
chronization. Assume there are two points in a sequential piece of code,
called P1 and P2. Putting a barrier between P1 and P2 guarantees that all
threads will execute P1 before any one thread executes P2. Your task: write
the code to implement a barrier() function that can be used in this man-
ner. It is safe to assume you know N (the total number of threads in the
running program) and that all N threads will try to enter the barrier. Again,
you should likely use two semaphores to achieve the solution, and some
other integers to count things. See barrier.c for details.

4. Now let’s solve the reader-writer problem, also as described in the text. In
this first take, don’t worry about starvation. See the code in reader-writer.c
for details. Add sleep() calls to your code to demonstrate it works as you
expect. Can you show the existence of the starvation problem?

5. Let’s look at the reader-writer problem again, but this time, worry about
starvation. How can you ensure that all readers and writers eventually
make progress? See reader-writer-nostarve.c for details.

6. Use semaphores to build a no-starve mutex, in which any thread that tries to
acquire the mutex will eventually obtain it. See the code in mutex-nostarve.c
for more information.

7. Liked these problems? See Downey’s free text for more just like them. And
don’t forget, have fun! But, you always do when you write code, no?

2Available: http://greenteapress.com/semaphores/downey08semaphores.pdf.
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