
An Introduction

thread

Why Use Threads?

parallelism

avoid blocking program progress due to slow I/O

threads interact when
they access shared data

A critical section is a piece of code that
accesses a shared variable (or more generally, a
shared resource) and must not be concurrently

executed by more than one thread

The Wish For Atomicity synchronization primitives

One More Problem: Waiting For Another

Thread API

Thread Creation

Thread Completion

pthread_create

pthread_join wait for a thread to complete

Locks pthread_mutex_lock
pthread_mutex_unlock

Condition Variables
Condition variables are useful when some kind of signaling must take place between threads,

if one thread is waiting for another to do something before it can continue. pthread_cond_wait
pthread_cond_signal

To use a condition variable, one has to in addition
have a lock that is associated with this condition.

Locks

Locks: The Basic Idea A lock is just a variable

Pthread Locks The name that the POSIX library uses for a lock is a mutex

Building A Lock To build a working lock, we will need some help from the hardware and the OS

Evaluating Locks

whether the lock does its basic task

fairness

performance

Lock implementation

Controlling Interrupts disable interrupts for critical sections;
this solution was invented for single-processor systems.

A Failed Attempt: Just Using Loads/Stores Failed

Building Working Spin Locks with Test-And-Set

 this sequence of operations is performed atomically

spin locks don’t provide any fairness guarantees

hardware primitive Compare-And-Swap The basic idea is for compare-and-swap to test whether
the value at the address specified by ptr is equal to expected

Load-Linked and Store-Conditional
MIPS、Alpha、PowerPC and ARM

Fetch-And-Add atomically increments a value while returning the old value at a particular address

ticket lock
Too Much Spinning

Hardware support alone cannot solve the problem.
We’ll need OS support too

Yield

when you are going to spin, instead give up the CPU to another thread

Using Queues: Sleeping Instead Of Spinning

may cause starvation

no starvation

Different OS, Different Support
Linux : futex

Two-Phase Locks

A two-phase lock realizes that spinning can be useful, particularly
if the lock is about to be released. So in the first phase, the lock
spins for a while, hoping that it can acquire the lock.

However, if the lock is not acquired during the first spin
phase, a second phase is entered, where the caller is put to
sleep, and only woken up when the lock becomes free later.

Lock-based Concurrent Data Structures Adding locks to a data structure to make it usable
 by threads makes the structure thread safe

Concurrent Counters

Concurrent Linked Lists

Concurrent Queues

Concurrent Hash Table

Simple But Not Scalable

Scalable Counting approximate counter

Condition Variablesthere are many cases where a thread wishes to check
whether a condition is true before continuing its execution

A condition variable is an explicit queue that threads can put themselves on when some state of execution (i.e., some condition)
is not as desired (by waiting on the condition); some other thread, when it changes said state, can then wake one (or more) of
those waiting threads and thus allow them to continue (by signaling on the condition).

Definition and Routines

The Producer/Consumer (Bounded Buffer) Problem

Covering Conditions

Semaphores

one can use semaphores as both locks and condition variables

A semaphore is an object with an integer value
that we can manipulate with two routines

sem_wait()

sem_post()

P()

V()

Binary Semaphores (Locks)

Semaphores For Ordering

The Producer/Consumer (Bounded Buffer) Problem

Reader-Writer Locks

The Dining Philosopherswe can use low-level synchronization primitives, locks and condition variables,
to build our own version of semaphores

Common Concurrency Problems

Non-Deadlock Bugs

Deadlock Bugs

atomicity violation bugs

order violation bugs

Event-based Concurrencydon’t use threads to build concurrent applications

The problem that event-based concurrency addresses is two-fold

1. managing concurrency correctly in multi-threaded applications can be challenging

 2. in a multi-threaded application, the developer has little or no control over what is
scheduled at a given moment in time

The Basic Idea: An Event Loop
 you simply wait for something (i.e., an “event”) to occur;
when it does, you check what type of event it is and do the
small amount of work it requires

An Important API: select() address the question of how to receive events

Asynchronous I/O
We have a rule that must be obeyed in event-based systems:
no blocking calls are allowed.

Problem1 : Blocking System Calls

solution

 Problem2 : State Management

 Problem3 : it does not integrate well with certain kinds of systems activity, such as paging.

manual stack management

