MSI/MSI-x X E gL

Liu, Junming

The Interrupt Story So Far

**Pin based
**Wired
**Shared

**Reduced
performance

MSI

**Memory write

*+*Stored as
address/data pairs

**Never shared
**Max 32 messages

MSI:

* *Extension to MSI

e *Stored in MSI-X
table

* *Individually
configurable

**Max of 2048 vecs Is 2048
enough?

MSI-X

Message Signaled Interrupt

Need for IMS(Interrupt Message Store)

GUEST 1 GUEST 2 GUEST n

VIRTUAL
DEVICE n

mmmm) n = 1000

VIRTUAL VIRTUAL
DEVICE 1 DEVICE 2

HOST VMM S/W

FAST PATH
3
|
N

FAST PATH
FAST PATH
FAST PATH

CBR1 . BR2 BR3
Total interrupt messages required =n*m *k=1000 *2 * 2 = 4000 (>> 2048)

What is MSI/MSI-x?

Processor #1 Processor #2 Processor #3 Processor #3
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
AA AA L A A
\ \
- J Al YY Y >
Interrupt A 4 Processor System Bus
Messages
Y
Bridg
“/ PCI
/
< >

-« External
VORAHG - Interrupts

System Chip Set
MSI/MSIx

PCI/PCle Device

From the POV of TLP, MSI/MSI-X is memory write TLP from device

http://xillybus.com/tutorials/pci-express-tlp-pcie-primer-tutorial-quide-1/

MSI-x table vector vs IDT vector

* MSI-x tablefx 2 % 352048 I
* Intel IDTR FH 2564 vector
« YN ECE ¢

F1MYIECPUER 256 vector, nNCPURLE

256 * n”vector, HIRIEMSI-x tablefEH 7T |

Advantages over legacy interrupt

There are three reasons why using MSIs can give an advantage over
traditional pin-based interrupts.

Pin-based PCI interrupts are often shared amongst several devices.
To support this, the kernel must call each interrupt handler associated o
with an interrupt, which leads to reduced performance for the system as
a whole. MSIs are never shared, so this problem cannot arise.

When a device writes data to memory, then raises a pin-based interrupt,
it is possible that the interrupt may arrive before all the data has
arrived in memory (this becomes more likely with devices behind PCI-PCI
bridges). In order to ensure that all the data has arrived in memory,
the interrupt handler must read a register on the device which raised 9
the interrupt. PCI transaction ordering rules require that all the data
arrive in memory before the value may be returned from the register.
Using MSIs avoids this problem as the interrupt-generating write cannot
pass the data writes, so by the time the interrupt is raised, the driver
knows that all the data has arrived in memory.

PCI devices can only support a single pin-based interrupt per function.
Often drivers have to query the device to find out what event has
occurred, slowing down interrupt handling for the common case. With
MSIs, a device can support more interrupts, allowing each interrupt e
to be specialised to a different purpose. One possible design gives
infrequent conditions (such as errors) their own interrupt which allows
the driver to handle the normal interrupt handling path more efficiently.
Other possible designs include giving one interrupt to each packet queue
in a network card or each port in a storage controller.

Advantages over legacy interrupt

* Legacy Interrupt * MSI/MSI-x

1% &= —vector ZMRE AL E vector

F—MEEH SN EH F—MRENZIEM

H = —vector HHE Jd 37 Byvector

PClefmX fR1E T

DMA'—?D%?EEES(W@”UM DMA(memory read/write TLP)5MSI(memory write TLP)
TR El‘] J "ﬁ)?’ II‘_&L

https://elixir. bootlin.com/linux/v5.3-rc4/source/Documentation/PCl/msi-howto.rst
https://en.wikipedia.org/wiki/Message Signaled Interrupts

Interrupt remapping in VEHO

memory

VM Exit

P

1
|
] Inject interrupt
1

eventfd_signal

VFIO device

CSDN @linuxfi#ht&

Guest OS

[Interrupt Handler]

LAPIC

A

VMM

o irqgfd_wakeup
kvm_set_msi_irq irafd
irq

4 evenfd_signal

VFIO & IOMMU

IOMMU Interrupt
Remapping Table

/ vfio_msihandler

https://kernelgo.org/vtd_interrupt remapping_code analysis.html

https://blog.csdn.net/flyingnosky/article/details/123748153

Physical Device

IRQ balance

Recently I tested the performance of NVMe SSD passthrough and found that interrupts
were aggregated on vcpul(or the first vcpu of each numa) by /proc/interrupts,when
GuestOS was upgraded to slesl2sp3 (or redhat7.6). But /proc/irqg/X/smp affinity list
shows that the interrupt is spread out, such as 0-10, 11-21,.... and so on.

This problem cannot be resolved by "echo X > /proc/irq/X/smp affinity list", because
the NVMe SSD interrupt is requested by the API pci alloc_irqg vectors(), so the
interrupt has the IRQD AFFINITY MANAGED flag.

The original order at my understanding is
nvme_setup_io_gqueues()
\
\ --->pci_alloc_irq vectors_affinity()
\ \
\ -> msi_domain_alloc_irgs()
\ \ /* if IRQD_AFFINITY MANAGED, then "mask = affinity " */
\ -> ...-> _ irq_ alloc_descs()
\ \ /* cpumask_copy(desc->irq_common_data.affinity, affinity); */
\ -> ...-> desc_smp_init()
->request_threaded_irq()

->_ setup_irq()

\ ->irqg_startup()->msi_domain_activate()
\ \
\ ->irq_enable()->pci_msi_unmask_irq()
\
-->setup_affinity()
\ \

\ -->if (irqd_affinity is managed(&desc->irq_data))

\ set = desc->irq_common_data.affinity;

\ cpumask_and(mask, cpu_online_mask, set);
\
-->irq do_set_affinity()
\
-->msi_domain_set_affinity()
\ /* Actual setting affinity*/
-->_ pci_write msi msg()

https://www.kernel.org/doc/html/latest/core-api/irg/irg-affinity.html
https://lore.kernel.org/gemu-devel/1554819296-14960-1-git-send-email-
ann.zhuangyanying@huawei.com/?spm=ata.21736010.0.0.38547536YAcnc4

/ANBEpass-thru MSI-X table

The format of the Message Address Register (lower 32-bits) is shown in Figure 10-24.

31

OFEEH Destination ID RH DM XX

Figure 10-24. Layout of the MSI Message Address Register

FEFUH B9 Destination ID5 432 fyDestination 1D

PR EY, ElsALERE !

viio-pcl: Allow mapping MSIX BAR

By default VFIO disables mapping of MSIX BAR to the userspace as

the userspace may program it in a way allowing spurious interrupts;
instead the userspace uses the VFIO_DEVICE_SET IRQS ioctl.

In order to eliminate guessing from the userspace about what is
mmapable, VFIO also advertises a sparse list of regions allowed to mmap.

This works fine as long as the system page size equals to the MSIX
alignment requirement which is 4KB. However with a bigger page size
the existing code prohibits mapping non-MSIX parts of a page with MSIX
structures so these parts have to be emulated via slow reads/writes on
a VFIO device fd. If these emulated bits are accessed often, this has
serious impact on performance.

This allows mmap of the entire BAR containing MSIX vector table.

This removes the sparse capability for PCI devices as it becomes useless.
As the userspace needs to know for sure whether mmapping of the MSIX
vector containing data can succeed, this adds a new capability -

VFIO REGION INFO CAP MSIX MAPPABLE - which explicitly tells the userspace
that the entire BAR can be mmapped.

This does not touch the MSIX mangling in the BAR read/write handlers as
we are doing this just to enable direct access to non MSIX registers.

Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>

[aw - fixup whitespace, trim function name]
Signed-off-by: Alex Williamson <alex.williamson@redhat.com>

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a32295c612c57990d17fb0f41e7134394b2f35f6

