the main idea of paravirtualization —————® make the target software(EiIHLIERIE R S:) "aware” of the fact that it is running inside a virtual machine.

instead of trying to (inefficiently) emulate some hardware I/0 device,
we can define a new virtual-only device, and simply provide a driver for it.

paravirtualization has become an important topic in I/0

Virtio networking

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

~~
~~o
~
-
-

B TR -
1. #£3: virtio: Towards a De-Facto Standard For Virtual I/0 Devices
FEA ARG R AR B A

2.Slides: Virtio: An I/0 virtualization framework for Linux
TS HE

I/0 paravirtualization ideas (3)

A better producer/consumer system should follow these principles:

A. Registers used only by the producer to notify the consumer that a queue is not empty anymore. They should not be used to store
producer and consumer state (e.g. ring indices).
Interrupts used by consumer to notify producer that a queue is not full anymore.
Producer and consumer state should be stored in memory, so that both producer and consumer can read it without VM exit overhead.
Producer and consumer should be run in separate threads, so that they can work in parallel. They should both try to do as much
processing as possible (polling) before going to sleep again, to amortize notification and wake-up costs.
Notifications should not be used when not necessary, i.e. when the other party is actively processing (not sleeping).
Busy waiting (uncontrolled polling) is not an acceptable general-purpose solution.

producer/consumer system

net backend NIC driver

. API API
Hypervisor . ues
yp ??? driver Guest

net backend frontend network stack
??? interface

The VirtIO interface (1)

These principles are the foundation of I/0 paravirtualization, which means that the guest device driver is aware of
running in a VM, while the rest of the guest kernel is not.

To get things right, we should note that the same principles can be applied also to other forms of virtualized 1/0 (block
storage, serial ports, ...), since all forms of I/0 can be seen as producer/consumer systems that exchange messages.

producer/consumer system

1/0 backend /0 driver

. API _— API
Hypervisor sl virtio driver Guest kernel
1/0 backend frontend virtio

interface

The VirtIO interface (2)

VirIO i st highIperormancel/OhroughIeviceIparaviFtUaliZation. 11 an effort to establish a standard message

passing API between drivers and hypervisors. Different drivers and frontends (e.g. a network I/0 and block I/0) can use
the same API, which implies code reuse of the API implementation.

_ and the other way around.

conversion conversion

HV backend virtio-net HV virtio guest virtio

frontend implementation implementation LR BUELAE

HV virtio guest-HV guest NIC driver
API interface virtio API API

https://www.wikiwand.com/en/New_API

