
Introduction to paravirtualization

G. Lettieri

2 Nov. 2017

Paravirtualization has been introduced in the first releases of the Xen hy-
pervisor. Xen was built to run x86 virtual machines on x86 systems, before the
introduction of the Intel and AMD hardware extensions for virtualization. As
we have seen, normal x86 systems are not easy to virtualize by a standard trap-
and-emulate hypervisor, since some crucial instructions are not trapped when
executed at lower privilege. We note that this problem arises because of one of
the requirements of virtualization: we don’t want to change the target software.
If we could change the target software, we could replace the difficult-to-virtualize
instructions with something else. This is the main idea of paravirtualization:
make the target software “aware” of the fact that it is running inside a virtual
machine.

Of course, we should find a good compromise: rewriting all the target soft-
ware from scratch is out of the question. We note that kernels are typically
ported to several, completely different machines, like x86 and ARM. This is
achieved partly by the use of high level languages (typically C) and partly by
relegating the system-specific parts that must be written in assembly language
to a few well-defined routines (e.g., routines to access the MMU or save/restore
the CPU registers). Porting a well designed kernel to a new architecture is a
matter of replacing the system-specific routines and recompiling the rest.

In Xen they observed that a virtual machine can be seen as just another
architecture to which a kernel may be ported. In this architecture, for example,
you access the MMU by actually issuing calls to the hypervisor, instead of
writing into registers. This idea was put forward to simplify the task of building
virtual machines in the x86 architecture, but it also has potential performance
advantages: in the port, the kernel may be optimized for the virtual architecture.
It also has the obvious disadvantage that you cannot install whatever you want
inside a Xen virtual machine: you have to be able to modify the target kernel.
Essentially, this was only fully completed for Linux and FreeBSD.

Note that Xen no longer uses paravirtualization for the purpose of virtualiz-
ing the CPU, as in the original implementation. Instead, it relies on the newly
available hardware extensions to implement hardware-assisted virtualization.
Therefore, you can install any OS inside a modern Xen VM. Still, paravirtual-
ization has become an important topic in other areas, e.g. in I/O: instead of
trying to (inefficiently) emulate some hardware I/O device, we can define a new
virtual-only device, and simply provide a driver for it. Note that the idea is

1

liujunming


liujunming


liujunming


liujunming


liujunming


liujunming


liujunming


liujunming


liujunming




XenDom API

Hardware

Dom 0 Dom 1 Dom n

· · ·

linux

xen tools

linux FreeBSD

f.e.b.e.

Figure 1: Xen architecture

still the same: we reuse some existing infrastructure in the original kernel (in
this case, the ability to install new drivers) to make some limited change (a new
driver) designed to work well in a virtualized environment. This very important
topic is examined in the virtio seminaries.

We now briefly describe the general architecture of Xen, which is an impor-
tant hypervisor on its own (see Figure 1). Xen is a very small kernel that is
loaded first on the machine and gains direct control to the hardware. On top
of Xen, at lower privilege level, we have so-called domains. There may be as
many domains as needed, and inside each domain we may run an entire OS
with its own applications. Domains are isolated from each other, and are used
to implement the virtual machines. One special domain, Dom 0, has access
to the Xen API to create and destroy other domains. Inside Dom 0 you can
install any OS you like, so that you can develop your own tools to manage the
other domains. Typically, Dom 0 contains a Debian Linux with Xen manage-
ment tools installed. Domains can be given direct access to some I/O devices,
or they can use fully virtualized devices (taken from QEMU), or they can use
paravirtual devices. Paravirtual devices are split in a front-end and a back-end,
each running into a different domain and exchanging I/O requests across the
domain boundaries. The typical setup is to run the back-end in a domain that
has direct access to hardware devices and gives indirect access to possibly sev-
eral front-ends running in non-privileged domains. In Figure 1 we have a linux
driver running in Dom 1 working as a back end for a FreeBSD front-end driver
in Dom n.

The kernels running in each domain may be either standard, unmodified
kernels (using hardware-assisted virtualization), or they may directly use some
of the Xen APIs to improve performance. Let us consider, for example, virtual
memory, to see how a paravirtual kernel (i.e., a kernel that is aware that it
is running inside a virtual machine) may run faster than an unmodified one,

2

liujunming


liujunming


liujunming


liujunming


liujunming


liujunming


liujunming




assuming that nested page-tables are not available (as was the case in the orig-
inal Xen). We have seen that, in this case, the guest kernel uses a set of page
tables that are not the ones actually used by the MMU. The reason for keeping
them distinct is that the translation created by the guest kernel (G) must be
composed with the translation from guest-physical to host-physical addresses
created by the Hypervisor (H) before we can let the MMU use it. There are
two distinct reasons for having H:

1. to create the illusion of contiguous memory in the guest kernel;

2. to limit access from the guest kernel to the pages that have been assigned
to it.

Note that to enforce point two we only need to deny write access to the host
page tables, but we could still grant read access to them. This would benefit per-
formance, since now the guest kernel would be able to read the MMU-updated
A and D bits from the page tables, without the need for the hypervisor to syn-
chronize them from the host tables. However, in a standard “fully” virtualized
machine (i.e., non paravirtual), we cannot even grant read access because of
point one. This is a consequence of the guest kernel ignoring the distinction
between guest and host physical addresses and thinking that it has access to a
range of contiguous physical addresses starting at 0, while the hypervisor may
have assigned to it a set of pages scattered anywhere in host memory. Therefore,
the (unmodified) guest kernel would not be able to correctly interpret the host
page tables. The situation changes for a paravirtual kernel: this kernel may be
fully aware of the distinction between guest and host physical addresses, and
so it can make good use of a read access to the host page tables. To enforce
point two, write access is still denied, and the paravirtual kernel must call an
hypervisor protected routine (an hypercall) whenever it wants to update its page
tables. The hypervisor will then check that the updates do not grant the guest
kernel access to portions of memory not assigned to it.

3

liujunming


liujunming



