Basic Concepts of
Virtualization

Junming Liu

Agenda

J Background
[Aspects in Control Register
- Aspects in MSR Register

. Aspects in memory virtualization
 Aspectsin IO
J Summary

Agenda

J Background

Three different context

* Physical context
e Shadow context
e Virtual context

(RGN

RT R 5 TR B

Agenda

J Aspects in Control Register

CR4 register

* Physical context (the physical value in root mode)
vmcs VMX_HOST _CRA4 field.
* Shadow context (the physical value in non-root mode)

For the bit owned by guest, the value is derived from guest. For the bit
, the value is derived from vmcs VMX_GUEST_CR4 field.

e Virtual context

For the bit , the value is derived from guest. For the bit
, the value is derived from vmcs
VMX_CR4 READ _SHADOW field

Rethinking
e Why CRAVMXE is T-AP AND ENMULATE BITS@

23.7 ENABLING AND ENTERING VMX OPERATION

Before system software can enter VMX operation, it enables VMX by setting CR4.VMXE[bit 13] = 1. VMX operation
is then entered by executing the VMXON instruction. VMXON causes an invalid-opcode exception (#UD) if executed
with CR4,VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see Section 23.8). System soft-
ware leaves VMX operation by executing the VMXOFF instruction. CR4.VMXE can be cleared outside of VMX opera-

tion after executing of VMXOFF.

[1] ACRN mainline virtual cr.c

https://github.com/projectacrn/acrn-hypervisor/blob/acrn-2020w51.5-180000p/hypervisor/arch/x86/guest/virtual_cr.c

Rethinking

* Why CRO.PG is TRAP AND PASSTHREU BITS m

if ((cre_changed_bits & CRe_PG) != auUL) {
/* PG bit changes */
if ((effective_cre & CRO_PG) != euL) {
/* Enable paging */
if ((vcpu_get_efer(vcpu) & MSR_IA32_EFER_LME_BIT) != euL) {
/* Enable long mode */
pr_dbg("VMM: Enable long mode");
entry_ctrls = exec_vmread32(VMX_ENTRY_CONTROLS);
entry_ctrls |= VMX_ENTRY_CTLS_IA32E_MODE;
g_)_(f__:_tl:____frrmr‘ite32(VMX_ENTRY_CONTROLS,M;

vcpu_set_efer(vcpu, vcpu_get_efer(vcpu) | MSR_IA32_EFER_LMA_BIT);

[1] ACRN mainline virtual cr.c

https://github.com/projectacrn/acrn-hypervisor/blob/acrn-2020w51.5-180000p/hypervisor/arch/x86/guest/virtual_cr.c

VMXON instruction

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#55(0)

#UD

If executed outside VMX operation with CPL>0 or with invalid CRO or CR4 fixed bits.
If executed in A20M mode.

If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.

If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

If the value of the IA32_FEATURE_CONTROL MSR does not support entry to VMX operation in
the current processor mode.

If a page fault occurs in accessing the memory source operand.
If the memory source operand effective address is outside the SS segment limit.
If the SS register contains an unusable segment.

If executed with CR4.VMXE = 0.

Conclusion

* If one bit has restriction in VMX operation or needs to do some
operations in root mode, It’s better to trap(owned by host) this bit.

Agenda

J Aspects in MSR Register

Hardware-assisted save and restore MSR

* VMCS field MSR

* MSR area
* AVMM may specify lists of MSRs to be stored and loaded on VM exits
* AVMM may specify a list of MSRs to be loaded on VM entries

VMCS field MSR(MSR IA32 EFER)

« VMX_HOST IA32 EFER_FULL
 VMX_GUEST IA32_EFER_FULL

* HV has ensured shadow context equals to virtual context, so don’t
need to intercept RDMSR

VISR area(MSR |A32 TSC AUX)

* In ACRN, virtual context equals to shadow context

Non hardware-assisted save and restore MSR

* shadow context = physical context

e MSR_IA32_EXT_XAPICID

* MSR _IA32 TIME_STAMP_COUNTER
* MSR_IA32 _EXT_APIC_VERSION

MSR IA32 EXT XAPICID

e For isolation, shadow context diff with virtual context
* Need to intercept RDMSR
* Virtual context value is set by HV

MSR IA32 TIME STAMP COUNTER

e For isolation, shadow context diff with virtual context

* Don’t need to intercept RDMSR

25.3 CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION

RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for

certain values of ECX:
— If ECX contains 10H (indicating the IA32_TIME_STAMP_COUNTER MSR), the value returned by the
instruction is determined by the setting of the “use TSC offsetting” VM-execution control:
* If the control is 0, RDMSR operates normally, loading EAX:EDX with the value of the
IA32_TIME_STAMP_COUNTER MSR.
* Ifthe controlis 1, the value returned is determined by the setting of the “use TSC scaling” VM-execution
control:

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel* 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.

-8 Vol. 3C

VMX NON-ROOT OPERATION

— If the control is 0, RDMSR loads EAX:EDX with the sum of the value of the
IA32 TIME STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDMSR first computes the product of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the

TSC offset.

MSR IA32 EXT APIC VERSION

e shadow context = virtual context

The motivation of MSR area mechanism

* Let’s take MSR_I1A32 TSC_AUX as an example. We need its virtual
context is different from physical context. If shadow context equals
physical context, Each time guest wants to read this MSR, VM Exit
needs to happen(read MSR maybe a frequent operation). This
method may impact system performance.

* So it is better to use guest/host field in the MSR area for
performance. BTW, use guest/host field in the MSR area, the shadow
context can be different from the physical context. So we don’t need
to trap MSR_1A32 TSC AUX. So, MSR area mechanism is to provide
host/guest field to the MSR, the hypervisor can use this host/guest
field to separate shadow context from physical context.

Agenda

J Aspects in memory virtualization

EPT

* Shadow context
HPA

* Virtual context
GPA

* Physical context

HPA, but may need the relationship between GPA,HVA and HPA to build
EPT table

Agenda

J Aspects in 10

MSI interrupt W/O interrupt remapping

Emulated Config Space

MSI address MSI data
OxFEExxxxx 30 |

Physical Device + Config Space

MSI address MSI data
OxFEExxxxx 50

MSI

interrupt

50

(a)

IOMMU . Hypervisor
. 1 e T .
no = ;;UP VMCS configured
IR capability, to cause vmexit
interupt | 2 * on external
pass-through vmexit interrupt
(b) (c)

Interrupt Delivery

. Guest VM
hypervisor ¢

injects process
f—— interrupt 30
intemmt on vmentry

30
(d)

Figure 6.16: MSI interrupt delivery without interrupt remapping support.

MSI interrupt With interrupt remapping

Emulated Config Space > >

MSI address MSI data
OxFEExxxxx 30

Physical Device + Config Space

source b:d.f vector 50 target LAPIC ID

Figure 6.17: MSI interrupt delivery with interrupt remapping support. (IRindex is denoted “inter-
rupt_index” in the VT-d specification.)

MSI interrupt

* In the previous two cases, shadow context equals to physical context
e virtual context diffs with shadow context

Agenda

J Summary

Ssummary

* Must be aware of the 3 different context for privileged resource
 Know what is done by hardware, what is done by software
 Know what is done in root mode, what is done in non-root mode

